我想对Sci Kit Learn中的unigrams做一些分析。我创建了svmlight格式的文件并试图运行MultinomialNB() KNeighborsClassifier() and SVC()
。我们首先试图用unigrams做到这一点,但我得到了X培训维度错误,可能是因为在给定示例中包含的唯一unigrams是在那里的培训中出现的唯一unigrams。我试图创建svmlight格式的培训文件,其中包括每个在语料库中查看的每个单元的占位符,即使那些不在该给出的示例中。用Scikit学习Unigram分析
问题是将训练文件从3 MB扩大到300 MB。这导致sklearn加载文件的内存错误。有没有办法绕过维度不匹配或内存溢出。
X_train, y_train= load_svmlight_file(trainFile)
x_test, y_test = load_svmlight_file(testFile)
try:
clf = MultinomialNB()
clf.fit(X_train, y_train)
preds = clf.predict(x_test)
print('Input data: ' + trainFile.split('.')[0])
print('naive_bayes')
print('accuracy: ' + str(accuracy_score(y_test, preds)))
if 1 in preds:
print('precision: ' + str(precision_score(y_test, preds)))
print('recall: ' + str(recall_score(y_test, preds)))
except Exception as inst:
print 'fail in NB ' + 'Input data: ' + trainFile.split('.')[0]
print str(inst)
pass
2828测试实例,并与18000个不同unigram进行
编辑1212个测试的例子,我试图用sklearn CountVectorizer
但我仍然得到内存的问题。这是做这件事的最好方法吗?
def fileLoadForPipeline(trainSetFile, valSetFile):
with open(trainSetFile) as json_file:
tdata = json.load(json_file)
with open(valSetFile) as json_file:
vdata = json.load(json_file)
x_train = []
x_val = []
y_train = []
y_val = []
for t in tdata:
x_train.append(t['request_text'])
y_train.append(t['requester_received_pizza'])
for v in vdata:
x_val.append(t['request_text'])
y_val.append(t['requester_received_pizza'])
return x_train, y_train, x_val, y_val
def buildPipeline(trainset, valset, norm):
x_train, y_train, x_val, y_val = fileLoadForPipeline(trainset, valset)
bigram_vectorizer = CountVectorizer(ngram_range=(1, 2), token_pattern=ur'\b\w+\b', min_df=1)
xT = bigram_vectorizer.fit_transform(x_train).toarray()
xV = bigram_vectorizer.fit_transform(x_val).toarray()
if norm:
transformer = TfidfTransformer()
xT = transformer.fit_transform(xT)
xV = transformer.fit_transform(xV)
results = []
for clf, name in ((Perceptron(n_iter=50), "Perceptron"),
(KNeighborsClassifier(n_neighbors=40), "kNN"), (MultinomialNB), (MultinomialNB(alpha=.01),'MultinomialNB'),
(BernoulliNB(alpha=.1),'BernoulliNB'),(svm.SVC(class_weight='auto'),'svc')):
print 80 * '='
print name
results.append(benchmark(clf))
你可以发布X_train,y_train,x_test和y_test的长度和尺寸以及你得到的错误吗? – user823743 2014-12-07 01:23:20
@ user823743添加了 – 2014-12-07 01:28:17
我的意思是如果您可以在代码中打印尺寸并将其张贴在这里?或者在分配这些数组时遇到错误?和控制台上的错误是什么? – user823743 2014-12-07 01:34:36