2017-10-11 105 views
0

我正尝试使用graphlab创建线性回归模型。我有200个样本和1个预测器。但是,我遇到了“数字溢出错误”,下面是输出:graphlab线性回归由于数值溢出错误而终止

model_all = graphlab.linear_regression.create(data2.tail(200), target='output', features=['input'],validation_set=None,l2_penalty=0.0002,solver = 'auto') 
Linear regression: 
-------------------------------------------------------- 
Number of examples   : 200 
Number of features   : 1 
Number of unpacked features : 1 
Number of coefficients : 2 
Starting Newton Method 
-------------------------------------------------------- 
+-----------+----------+--------------+--------------------+---------------+ 
| Iteration | Passes | Elapsed Time | Training-max_error | Training-rmse | 
+-----------+----------+--------------+--------------------+---------------+ 
+-----------+----------+--------------+--------------------+---------------+ 
TERMINATED: Terminated due to numerical overflow error. 
This model may not be ideal. To improve it, consider doing one of the following: 
(a) Increasing the regularization. 
(b) Standardizing the input data. 
(c) Removing highly correlated features. 
(d) Removing `inf` and `NaN` values in the training data 

提示(二),(c)和(d),因为只有1个功能且没有INF并不适用于我的情况或NaN值。我尝试了各种l2_penalty,但都没有用。如果我将样本数量限制在一个较小的数字上,如180,那么它将起作用。

model_all = graphlab.linear_regression.create(data2.tail(180), target='output', features=['input'],validation_set=None,l2_penalty=0.0002,solver = 'auto') 
model_all.get("coefficients").print_rows(num_rows=100) 
Linear regression: 
-------------------------------------------------------- 
Number of examples   : 180 
Number of features   : 1 
Number of unpacked features : 1 
Number of coefficients : 2 
Starting Newton Method 
-------------------------------------------------------- 
+-----------+----------+--------------+--------------------+---------------+ 
| Iteration | Passes | Elapsed Time | Training-max_error | Training-rmse | 
+-----------+----------+--------------+--------------------+---------------+ 
| 1   | 2  | 0.000866  | 9.873043   | 4.272624  | 
+-----------+----------+--------------+--------------------+---------------+ 
SUCCESS: Optimal solution found. 
+----------------+-------+------------------+-------------------+ 
|  name  | index |  value  |  stderr  | 
+----------------+-------+------------------+-------------------+ 
| (intercept) | None | 9.3412783539 | 3.80166353756 | 
| DOEDDIST.Index | None | 0.00226165438702 | 0.000975084975224 | 
+----------------+-------+------------------+-------------------+ 
[2 rows x 4 columns] 

我不明白是什么导致数值溢出错误。有人可以帮忙解释吗?

谢谢。

+0

如果解决这个任务是你所需要的,你总是可以选择其他的求解器。为了调试,你可能应该显示数据,尽管你的观察结果确实很奇怪。 – sascha

+0

感谢您的回复 – Pollyanna

回答

0

我加倍检查了我的数据,确实有NaN条目。我的错。 data.dropna(axis = 'index',how = 'any',inplace=True)解决了它。