我是Apache Mahout的新手。我正在使用Apache Mahout 0.11.2。所以为了试一试,我创建了一个名为samplereccommender.java的java类,如下所示。自定义推荐工作使用Apache Mahout 0.11.2在hadoop
package f;
import java.io.File;
import java.io.IOException;
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.UserBasedRecommender;
import org.apache.mahout.cf.taste.similarity.ItemSimilarity;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;
import java.util.List;
public class SampleReccommender {
public static void main(String args[]){
try{
DataModel datamodel = new FileDataModel(new File(args[0]));
//Creating UserSimilarity object.
UserSimilarity usersimilarity = new PearsonCorrelationSimilarity(datamodel);
//Creating UserNeighbourHHood object.
UserNeighborhood userneighborhood = new ThresholdUserNeighborhood(1.0, usersimilarity, datamodel);
//Create UserRecomender
UserBasedRecommender recommender = new GenericUserBasedRecommender(datamodel, userneighborhood, usersimilarity);
List recommendations = (List) recommender.recommend(2, 3);
System.out.println(recommendations.size());
for (int i=0; i< recommendations.size();i++) {
System.out.println(recommendations.get(i));
}
}
catch(Exception e){
e.printStackTrace();
}
}}
我设法运行命令行相同的代码
java命令n.jar f.SampleReccommender n_lib/wishlistdata.txt
现在“ Mahout在行动中“我明白,通过使用以下命令,可以在hadoop上运行相同的代码。 首先,我需要将SampleReccommender.java加入到现有的apache-mahout-distribution-0.11.2/mahout-mr-0.11.2-job.jar中。所以我遵循以下程序。
罐子UF /Users/rohitjain/Documents/apache-mahout-distribution-0.11.2/mahout-mr-0.11.2-job.jar samplerecommender.jar
然后我试图运行使用象夫的工作以下命令
仓/ hadoop的罐子/Users/rohitjain/Documents/apache-mahout-distribution-0.11.2/mahout-mr-0.11.2-job.jar org.apache.mahout.cf.taste.hadoop .item.RecommenderJob -i /input/wishlistdata.txt -o/output/--recommenderClassName \ f.SampleRecommender
但它给了我一个错误:
意外--recommenderClassName在处理作业专用选项:
我想上面的命令,根据提供的“象夫在行动”一书的语法,低于
如前所述hadoop jar mahout-core-0.5-job.jar \ org.apache.mahout.cf.taste.hadoop.pseudo.RecommenderJob \ -Dmapred.input.dir = input/ua.base.hadoop \ -Dmapred.output .dir = output \ --recommenderClassName \ org.apache.mahout.cf.taste.impl.recommender.slopeone.SlopeOneRecommender
我做错了什么?另外告诉我,我用于独立实现的代码是否可以用于推荐者作业,或者它需要所有不同的实现?