我在Viewport3D中有一些GeometryModel3D球,它们中的一些是可见的,其中一些被蓝色立方体隐藏。 (下面的图片在2D中让我们假装所有的物体都是3D)确定3D对象是否被另一3D对象隐藏
我想确定哪个红球可以被看到,哪些被隐藏。
我该怎么做?
我在Viewport3D中有一些GeometryModel3D球,它们中的一些是可见的,其中一些被蓝色立方体隐藏。 (下面的图片在2D中让我们假装所有的物体都是3D)确定3D对象是否被另一3D对象隐藏
我想确定哪个红球可以被看到,哪些被隐藏。
我该怎么做?
这个问题也被称为Occlusion Culling,虽然你有兴趣计数闭塞元。鉴于你的场景,一个强力的办法来解决这个问题(假设你使用透视投影)的条件是以下伪代码:
occludedSpheresCount = 0
spheres = {Set of spheres}
cubes = {Set of cubes}
normalizedCubes = {}
# First, build the set of normalized cubes (it means,
# take the cubes that are free in space and transform their
# coordinates to values between [-1, -1, -1] and [1, 1, 1], they are the same
# cubes but now the coordinates are laying in that range
# To do that, use the
ProjectionMatrix
projectionMatrix = GetProjectionMatrix(perspectiveCamera)
for each cube in cubes do
Rect3D boundingBox = cube.Bounds()
Rect3D normalizedBBox = projectionMatrix.transform(boundingBox)
cubes_normalized.add(normalizedBBox)
end for
# Now search every sphere, normalize it's bounding box
# and check if it's been occluded by some normalized cube
for each sphere in spheres do
Rect3D sphereBBox = sphere.Bounds()
Rect3D normalizedSphere = projectionMatrix.transform(sphereBBox)
for each normalizedCube in normalizedCubes do
x0 = normalizedCube.Location.X - (normalizedCube.Location.SizeX/2)
y0 = normalizedCube.Location.Y - (normalizedCube.Location.SizeY/2)
z0 = normalizedCube.Location.Z - (normalizedCube.Location.SizeZ/2)
xf = normalizedCube.Location.X + (normalizedCube.Location.SizeX/2)
yf = normalizedCube.Location.Y + (normalizedCube.Location.SizeY/2)
sx0 <- normalizedSphere.Location.X - (normalizedSphere.Location.SizeX/2)
sy0 <- normalizedSphere.Location.X - (normalizedSphere.Location.SizeY/2)
sz0 <- normalizedSphere.Location.X - (normalizedSphere.Location.SizeZ/2)
sxf <- normalizedSphere.Location.X + (normalizedSphere.Location.SizeX/2)
syf <- normalizedSphere.Location.X + (normalizedSphere.Location.SizeY/2)
# First, let's check that the normalized-sphere is behind the
# normalized-cube, to do that, let's compare their z-front values
if z0 > sz0 then
# Now that we know that the sphere is behind the frontface of the cube
# lets check if it is fully contained inside the
# the normalized-cube, in that case, it is occluded
if sx0 >= x0 and sxf <= xf and sy0 >= y0 and syf >= yf then
occludedSpheresCount++
# Here you can even avoid rendering the sphere altogether
end if
end if
end for
end for
一种方式来获得的projectionMatrix使用以下代码(来自here萃取):
private static Matrix3D GetProjectionMatrix(PerspectiveCamera camera, double aspectRatio)
{
// This math is identical to what you find documented for
// D3DXMatrixPerspectiveFovRH with the exception that in
// WPF the camera's horizontal rather the vertical
// field-of-view is specified.
double hFoV = MathUtils.DegreesToRadians(camera.FieldOfView);
double zn = camera.NearPlaneDistance;
double zf = camera.FarPlaneDistance;
double xScale = 1/Math.Tan(hFoV/2);
double yScale = aspectRatio * xScale;
double m33 = (zf == double.PositiveInfinity) ? -1 : (zf/(zn - zf));
double m43 = zn * m33;
return new Matrix3D(
xScale, 0, 0, 0,
0, yScale, 0, 0,
0, 0, m33, -1,
0, 0, m43, 0);
}
这个方法的唯一缺点是在以下情况下:
+--------------+--------------+ | -|- | | /| \ | | | | | | | \ |/ | | -|- | +--------------+--------------+ or interception here | v +----------+--+--------------+ | | -|- | | /| | \ | | | | | | | | \| |/ | | | -|- | +----------+--+--------------+
在这两个遮光立方体闭塞的领域,在这种情况下,你必须建立一套套标准化立方体(Set{ Set{ cube1, cube2}, Set{cube3, cube4}, ... }
)当两个或多个立方体区域拦截(即可以在第一循环中完成)并且争用测试会更加复杂。不知道你的程序是否允许(立方体拦截),虽然
这个算法是O(n^2)
因为是一个蛮力的方法,希望这可以给你一个提示的权威性解决方案,如果你正在寻找更高效的一般解决方案,请使用类似Hierarchical Z Buffering
感谢h3nr1x,我没有成功地将您的伪代码转换为c#,WPF,所以我不知道它是否是正确的答案。 – Erez 2012-07-15 12:32:48
您想知道球是否部分隐藏吗?或者你需要一个二进制测试吗? – higuaro 2012-07-09 13:34:36
h3nr1x - 如果它只是部分隐藏,它不会被认为是隐藏的。 – Erez 2012-07-09 21:16:50
球基元是以{center,radius}还是作为模型网格存储(如果你将它们存储为模型网格,是否存储它们的中心和半径)?立方体基元是否作为边界框存储?你正在使用正投影还是透视投影? (我需要的信息来阐述解决方案) – higuaro 2012-07-09 23:33:34