def all primes(start,end):
list_primes = []
for i in range(start,end):
for a in range(2,i):
if i % a == 0:
list_primes.append(i)
return list_primes
出于某种原因,它返回的只是素数。它可能是一些愚蠢的错误。谁能帮忙?如何查找给定范围内的所有素数?
def all primes(start,end):
list_primes = []
for i in range(start,end):
for a in range(2,i):
if i % a == 0:
list_primes.append(i)
return list_primes
出于某种原因,它返回的只是素数。它可能是一些愚蠢的错误。谁能帮忙?如何查找给定范围内的所有素数?
你只添加素数,直到i - 1它从来没有除数。因此,对于 2的所有'a',直到i - 1 if(i % a == 0)
评估为false。
if(i % a == 0)
if(i % a == 0)
对'a'和'i'的评估结果不是素数。因此,你停下来,再换一个'我'。
你可以试试这个功能
def generate_primes(lower_limit,upper_limit):
if not isprime(lower_limit):
return False
candidate = lower_limit
r = []
while(candidate <= upper_limit):
trial_divisor = 2
prime = 1 # assume it's prime
while(trial_divisor**2 <= candidate and prime):
if(candidate%trial_divisor == 0):
prime = 0 # it isn't prime
trial_divisor+=1
if(prime):
r += [candidate]
candidate += 2
return r
def isprime(n):
'''check if integer n is a prime'''
# make sure n is a positive integer
n = abs(int(n))
# 0 and 1 are not primes
if n < 2:
return False
# 2 is the only even prime number
if n == 2:
return True
# all other even numbers are not primes
if not n & 1:
return False
# range starts with 3 and only needs to go up the squareroot of n
# for all odd numbers
for x in range(3, int(n**0.5)+1, 2):
if n % x == 0:
return False
return True
我对此页进行了修改http://dunningrb.wordpress.com/2009/02/12/prime-numbers-and-a-simple-python-code/
试试这个:
def isprime (x):
isprime=True
if x!=2:
for i in range (2,x):
if x%2==0:
isprime=False
break
return isprime
x=int(input("enter a number"))
z=isprime(x)
print(z)
试试这个(使用筛埃拉托色尼的):
def all_primes(start, end):
return list(sorted(set(range(start,end+1)).difference(set((p * f) for p in range(2, int(end ** 0.5) + 2) for f in range(2, (end/p) + 1)))))
为了得到质数,尝试实现埃拉托色尼算法的筛https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
在Python 3寻求在100万的数字中,对我而言大约需要0.5秒
def get_primes(start, stop):
dct = {x: True for x in list(range(start, stop+1))}
x = start
while x ** 2 <= stop:
if dct[x]:
y = x ** 2
while y <= stop:
dct[y] = False
y += x
x += 1
lst = []
for x, y in dct.items():
if y:
lst.append(x)
return lst
res = get_primes(2, 1000000)
print(res)
如果使用'start'如果它不工作?例如'3,7'你会得到'[3,4,5,6,7]'。 –
我想和大家分享的是我发现的范围内产生质数的最快方法是使用SymPy symbolic mathematics library:
import sympy
def all_primes(start, end):
return list(sympy.sieve.primerange(start, end))
的sympy.sieve.primerange()
函数返回一个发电机,所以我们需要list()
将其转换为一个列表。
下面是已经很优化的回答这个之间的性能差异,以及一个例子是目前最upvoted在这个线程:
import sympy
def get_primes_python(start, stop):
dct = {x: True for x in list(range(start, stop+1))}
x = start
while x ** 2 <= stop:
if dct[x]:
y = x ** 2
while y <= stop:
dct[y] = False
y += x
x += 1
lst = []
for x, y in dct.items():
if y:
lst.append(x)
return lst
def get_primes_sympy(start, stop):
return list(sympy.sieve.primerange(start, stop))
In [2]: %timeit test.get_primes_python(1, 10**7) 1 loop, best of 3: 4.21 s per loop In [3]: %timeit test.get_primes_sympy(1, 10**7) 10 loops, best of 3: 138 ms per loop
你怎么叫呢? – Makoto