我试图评估该计划是:如何在RWeka中评估此方案?
weka.classifiers.meta.AttributeSelectedClassifier -E "weka.attributeSelection.CfsSubsetEval " -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W weka.classifiers.functions.SMOreg -- -C 1.0 -N 0 -I "weka.classifiers.functions.supportVector.RegSMOImproved -L 0.0010 -W 1 -P 1.0E-12 -T 0.0010 -V" -K "weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0"
即我试图运行与SMOreg分级机内的AttributeSelectedClassifier。其他每个参数都是相应分类器的默认值。
因此将R代码:
optns <- Weka_control(W = "weka.classifiers.functions.SMOreg")
ASC <- make_Weka_classifier("weka/classifiers/meta/AttributeSelectedClassifier")
model <- ASC(class ~ ., data = as.data.frame(dat), control = optns)
evaluation <- evaluate_Weka_classifier(model, numFolds = 10)
evaluation
当我运行上述R代码我得到这个错误:在RWeka的evaluate.R发生
Error in .jcall(evaluation, "D", x, ...) : java.lang.NullPointerException
上述错误它试图调用WEKA方法:"pctCorrect", "pctIncorrect", "pctUnclassified", "kappa", "meanAbsoluteError","rootMeanSquaredError","relativeAbsoluteError","rootRelativeSquaredError"
我也尝试使用Weka_control对象手动指定默认值,如下所示:
optns <- Weka_control(E = "weka.attributeSelection.CfsSubsetEval ",
S = list("weka.attributeSelection.BestFirst", D = 1,N = 5),
W = list("weka.classifiers.functions.SMOreg", "--",
C=1.0, N=0,
I = list("weka.classifiers.functions.supportVector.RegSMOImproved",
L = 0.0010, W=1,P=1.0E-12,T=0.0010,V=TRUE),
K = list("weka.classifiers.functions.supportVector.PolyKernel",
C=250007, E=1.0)))
ASC <- make_Weka_classifier("weka/classifiers/meta/AttributeSelectedClassifier")
model <- ASC(class ~ ., data = as.data.frame(dat), control = optns)
evaluation <- evaluate_Weka_classifier(model, numFolds = 10)
evaluation
,我得到这个错误:
Error in .jcall(classifier, "V", "buildClassifier", instances) : java.lang.Exception: Can't find class called: weka.classifiers.functions.SMOreg -- -C 1 -N 0 -I weka.classifiers.functions.supportVector.RegSMOImproved -L 0.001 -W 1 -P 1e-12 -T 0.001 -V -K weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1