我们想知道是否有可能执行类似附图的操作。GIF或PNG图像上的颜色检测
我们在我们的网站上有一个实时气象雷达,投影在谷歌地图页面上,更新周期为5分钟。
这是什么想法?
我们想为我们的游客探测到“沉重的”风暴,并用方箱或其他东西来突出它们。如果可能的话,我们想用PHP制作这个系统。我认为最好的方法是检测颜色或其他东西?
附为例,我们用Photoshop绘制的图片:
我们希望有人能帮助我们,所以我们可以开始使用的东西!
我们想知道是否有可能执行类似附图的操作。GIF或PNG图像上的颜色检测
我们在我们的网站上有一个实时气象雷达,投影在谷歌地图页面上,更新周期为5分钟。
这是什么想法?
我们想为我们的游客探测到“沉重的”风暴,并用方箱或其他东西来突出它们。如果可能的话,我们想用PHP制作这个系统。我认为最好的方法是检测颜色或其他东西?
附为例,我们用Photoshop绘制的图片:
我们希望有人能帮助我们,所以我们可以开始使用的东西!
我对此进行了另一次尝试,使用我在C中编写的一些Connected Component Analysis
软件。它很容易在任何OS X/Linux/Windows机器上编译。
所以,这里是脚本:
#!/bin/bash
# Make red areas white and all else black for blob analysis
convert http://i.stack.imgur.com/qqein.png \
-fuzz 50% \
-fill white +opaque red \
-fill black -opaque red -colorspace gray -negate -depth 16 weather.pgm
# Run Connected Component Analysis to find white blobs and their areas and bounding boxes
./cca <weather.pgm> /dev/null 2> info.txt
# Find blobs with more than 100 pixels
while read a b ;do
draw="$draw -draw \"rectangle $a $b\" "
done < <(awk '/Area/{area=$5+0;if(area>100)print $7,$8}' info.txt)
# Now draw the rectangles on top of the source image
eval convert http://i.stack.imgur.com/qqein.png -strokewidth 2 -stroke red -fill none "$draw" result.png
文件weather.pgm
出来是这样的:
部分输出的cca
程序
DEBUG: New blob (1) started at [1][510]
INFO: Blob 1, Area: 8, Bounds: 510,1 510,8
DEBUG: New blob (2) started at [1][554]
INFO: Blob 2, Area: 6, Bounds: 554,1 559,1
DEBUG: New blob (3) started at [2][550]
INFO: Blob 3, Area: 1, Bounds: 550,2 550,2
DEBUG: New blob (4) started at [3][524]
INFO: Blob 4, Area: 1, Bounds: 524,3 524,3
DEBUG: New blob (5) started at [3][549]
INFO: Blob 5, Area: 1, Bounds: 549,3 549,3
DEBUG: New blob (6) started at [3][564]
INFO: Blob 6, Area: 1, Bounds: 564,3 564,3
DEBUG: New blob (7) started at [4][548]
INFO: Blob 7, Area: 1, Bounds: 548,4 548,4
DEBUG: New blob (8) started at [5][526]
INFO: Blob 8, Area: 1, Bounds: 526,5 526,5
DEBUG: New blob (9) started at [5][546]
在脚本的最后convert
命令被称为是这样的:
convert http://i.stack.imgur.com/qqein.png -strokewidth 2 -stroke red -fill none \
-draw 'rectangle 930,125 958,142' -draw 'rectangle 898,138 924,168' \
-draw 'rectangle 822,143 846,172' -draw 'rectangle 753,167 772,175' \
-draw 'rectangle 658,181 758,215' -draw 'rectangle 759,186 803,197' \
-draw 'rectangle 340,223 372,267' -draw 'rectangle 377,259 429,294' \
-draw 'rectangle 977,281 988,357' -draw 'rectangle 705,321 751,351' \
-draw 'rectangle 624,376 658,412' -draw 'rectangle 357,485 380,499' result.png
,结果是这样的:
的cca.c
程序是这样的:
/*******************************************************************************
File: cca.c
Author: Mark Setchell
Description:
Connected Components Analyser and Labeller - see algorithm at
http://en.m.wikipedia.org/wiki/Connected-component_labeling#One-pass_version
Algorithm
=========
1. Start from the first pixel in the image. Set "curlab" (short for "current label") to 1. Go to (2).
2. If this pixel is a foreground pixel and it is not already labelled, then give it the label "curlab" and add it as the first element in a queue, then go to (3). If it is a background pixel, then repeat (2) for the next pixel in the image.
3. Pop out an element from the queue, and look at its neighbours (based on any type of connectivity). If a neighbour is a foreground pixel and is not already labelled, give it the "curlab" label and add it to the queue. Repeat (3) until there are no more elements in the queue.
4. Go to (2) for the next pixel in the image and increment "curlab" by 1.
CurrentLabel=1
for all pixels in image
if this is a foreground pixel
if this pixel is not already labelled
label this pixel with Currentlabel
add this pixel to queue
while there are items in the queue
pop item from queue
for all 4-connected or 8-connected neighbours of this item
if neighbour is foreground and is not already labelled
label this neighbour with Currentlabel
add this neighbour to the queue
endif
endfor
endwhile
increment Currentlabel
endif
else
label as background in output image
endif
endfor
Usage
=====
Usage: cca [-c 4|8] <Binarized16BitPGMFile> Binarized16BitPGMFile
where "-c" specifies whether pixels must be 4- or 8-connected to be considered
as parts of same object. By default 4-connectivity is assumed.
Files can be prepared for this program with ImageMagick as follows:
convert YourImage.[jpg|bmp|png|tif] \
-colorspace gray \
-threshold 50% \
-depth 16 \
[-negate] \
FileForAnalysis.pgm
This program expects the background pixels to be black and the objects to be
white. If your image is inverted relative to this, use the "-negate" option.
On OSX, run and view results with ImageMagick like this:
cca < test1.pgm | convert PGM:- -auto-level a.jpg && open a.jpg
*******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <string.h>
#define DEFAULT_CONNECTIVITY 4
void Usage() {
printf("Usage: cca [-c 4|8] <InputImage.pgm> OutputImage.pgm\n");
exit(EXIT_FAILURE);
}
int pixelIsForegroundAndUnlabelled(uint16_t **iIm,uint16_t **oIm,int height,int width,int row,int col){
if((row<0)||(row>=height)||(col<0)||(col>=width)) return 0;
return (iIm[row][col]!=0) && (oIm[row][col]==0);
}
// Stuff needed for queue
int count=0;
struct node
{
int x,y;
struct node *p;
} *top,*tmp;
void push(int row,int col){
if(top==NULL)
{
top =(struct node *)malloc(sizeof(struct node));
top->p = NULL;
top->x = row;
top->y = col;
}
else
{
tmp =(struct node *)malloc(sizeof(struct node));
tmp->p = top;
tmp->x = row;
tmp->y = col;
top = tmp;
}
count++;
}
void pop(int *x,int *y){
tmp = top;
tmp = tmp->p;
*x = top->x;
*y = top->y;
free(top);
top = tmp;
count--;
}
int main (int argc, char ** argv)
{
int i,reqcon;
int connectivity=DEFAULT_CONNECTIVITY;
uint16_t currentlabel=1;
while (1) {
char c;
c = getopt (argc, argv, "c:");
if (c == -1) {
break;
}
switch (c) {
case 'c':
reqcon=atoi(optarg);
/* Permitted connectivity is 4 or 8 */
if((reqcon!=4)&&(reqcon!=8)){
Usage();
}
connectivity=reqcon;
break;
case '?':
default:
Usage();
}
}
int width,height,max;
int row,col;
/* Check it is P5 type */
char type[128];
fscanf(stdin,"%s",type);
if (strncmp(type,"P5",2)!=0) {
fprintf(stderr, "ERROR: The input data is not binary PGM, i.e. not type P5\n");
exit(EXIT_FAILURE);
}
fscanf(stdin,"%d %d\n",&width,&height);
fscanf(stdin,"%d",&max);
fgetc(stdin);
/* Check 16-bit */
if (max != 65535){
fprintf(stderr, "ERROR: The input data is not 16-bit\n");
exit(EXIT_FAILURE);
}
// Allocate space for input & output image & read input image
uint16_t **iIm; // pixels of input image
uint16_t **oIm; // pixels of output image
iIm = (uint16_t**)malloc(height * sizeof(uint16_t *));
oIm = (uint16_t**)malloc(height * sizeof(uint16_t *));
if((iIm==NULL)||(oIm==NULL)){
fprintf(stderr, "ERROR: out of memory\n");
exit(EXIT_FAILURE);
}
for(i=0;i<height;i++)
{
iIm[i] = (uint16_t*) malloc(width*sizeof(uint16_t));
oIm[i] = (uint16_t*) calloc(width,sizeof(uint16_t));
if((iIm[i]==NULL)||(oIm[i]==NULL)){
fprintf(stderr, "ERROR: Unable allocate memory\n");
exit(EXIT_FAILURE);
}
// Read in one row of image
if(fread(iIm[i],sizeof(uint16_t),width,stdin)!=width){
fprintf(stderr,"ERROR: Reading input file\n");
exit(EXIT_FAILURE);
}
}
// Start of algorithm
for(row=0;row<height;row++){
for(col=0;col<width;col++){
// If this is a foreground pixel that is not yet labelled
if(pixelIsForegroundAndUnlabelled(iIm,oIm,height,width,row,col)){
fprintf(stderr,"DEBUG: New blob (%d) started at [%d][%d]\n",currentlabel,row,col);
int ThisBlobPixelCount=1;
int ThisBlobrmin=row;
int ThisBlobrmax=row;
int ThisBlobcmin=col;
int ThisBlobcmax=col;
oIm[row][col]=currentlabel; // Label the pixel
push(row,col); // Put it on stack
while(count>0){ // While there are items on stack
int tr,tc;
pop(&tr,&tc); // Pop x,y of queued pixel from stack
// Work out who the neighbours are
int neigh[][2]={{tr-1,tc},{tr+1,tc},{tr,tc-1},{tr,tc+1}};
if(connectivity==8){
neigh[4][0]=tr-1; neigh[4][3]=tc-1;
neigh[5][0]=tr+1; neigh[5][4]=tc+1;
neigh[6][0]=tr+1; neigh[6][5]=tc-1;
neigh[7][0]=tr-1; neigh[7][6]=tc+1;
}
// Process all neighbours
for(i=0;i<connectivity;i++){
int nr=neigh[i][0];
int nc=neigh[i][7];
if(pixelIsForegroundAndUnlabelled(iIm,oIm,height,width,nr,nc)){
oIm[nr][nc]=currentlabel;
push(nr,nc);
ThisBlobPixelCount++;
if(nr<ThisBlobrmin)ThisBlobrmin=nr;
if(nr>ThisBlobrmax)ThisBlobrmax=nr;
if(nc<ThisBlobcmin)ThisBlobcmin=nc;
if(nc>ThisBlobcmax)ThisBlobcmax=nc;
}
}
}
// Output statistics/info about the blob we found
fprintf(stderr,"INFO: Blob %d, Area: %d, Bounds: %d,%d %d,%d\n",currentlabel,ThisBlobPixelCount,ThisBlobcmin,ThisBlobrmin,ThisBlobcmax,ThisBlobrmax);
currentlabel++; // Increment label as we have found all parts of this blob
}
}
}
// Write output image
fprintf(stdout,"P5\n%d %d\n65535\n",width,height);
for(row=0;row<height;row++){
if(fwrite(oIm[row],sizeof(uint16_t),width,stdout)!=width){
fprintf(stderr,"ERROR: Writing output file\n");
exit(EXIT_FAILURE);
}
}
return EXIT_SUCCESS;
}
正确的方法做,很可能会使用某种斑点分析的提取红色区域并做边界周围盒。这并不难,但在开始这种方法时,我可以用一行ImageMagick来做更简单但相当有效的事情。它在命令行以及PHP,Perl,Python和其他绑定中都是免费的。因此,我打算将所有红色区域转换为白色,并将所有非红色区域转换为黑色,然后运行Blob分析并在白色斑点周围绘制红色边界框。但在途中,我想可能会让图像的非红色区域变为半透明区域,然后再将红色区域完全透明化,所以关注的焦点是红色的东西,其他所有东西都很苍白。这可以在一个单一的ImageMagick命令来完成这样的:
convert http://i.stack.imgur.com/qqein.png \
\(+clone \
-fuzz 30% \
-fill "#222222" +opaque red \
-fill "#ffffff" -opaque red -colorspace gray \) \
-compose copy-opacity -composite out.png
的结果是这样的:
,如果你喜欢的方法的数字可以明显地调整了...
** + 1 **也非常好的方法:-) –
我会通过使用-fx运算符来隔离红色单元格。
convert source.png -fx '(p.r > p.b && p.r > 0.9) ? p : 0' a_RED.png
的p.r > p.b
除去白色的颜色,以及对的0.9
的阈值的当前像素p.r > 0.9
检查。
这种方法需要一些额外的CPU时间,但确实能够调整严重程度。
** + 1 **非常高雅:-) –
我才发现,原来ImageMagick
可以做连成分分析所以我现在可以提供不依赖于我的C代码更简单的解决方案。
这就是:
#!/bin/bash
draw=$(convert http://i.stack.imgur.com/qqein.png \
-fuzz 50% \
-fill white +opaque red \
-fill black -opaque red \
-colorspace gray \
-define connected-components:verbose=true \
-define connected-components:area-threshold=100 \
-connected-components 8 \
-auto-level baddies.png | \
awk 'BEGIN{command=""}
/\+0\+0/||/id:/{next}
{
geom=$2
gsub(/x/," ",geom)
gsub(/+/," ",geom)
split(geom,a," ")
d=sprintf("-draw \x27rectangle %d,%d %d,%d\x27 ",a[3],a[4],a[3]+a[1],a[4]+a[2])
command = command d
#printf "%d,%d %d,%d\n",a[3],a[4],a[3]+a[1],a[4]+a[2]
}
END{print command}')
eval convert http://i.stack.imgur.com/qqein.png -fill none -strokewidth 2 -stroke red $draw out.png
这里是产生的图像:
,并在这里从文件标记的对象baddies.png
这里有索姆e关于代码的说明...
-fuzz 50%允许一些程度的变化中的红色
-fill白色不透明+红色检测到的色调 - 改变所有红色像素,以白色
-fill黑色-opaque红色 - 将所有非红色像素更改为黑色
-define connected-components:verbose = true - 导致诊断输出,所以我可以ge吨边界框它找到
-define连接组件:区域阈值= 100 - 说我只在尺寸100个像素或更大
- 连通组件8红色区域有兴趣 - 说红点可以连接到他们的8邻居(即斜加盟,而不是方加入)
- 自动水平baddies.png - 对比度拉伸标记风暴的对象并将它们保存在一个名为baddies.png
的awk
东西文件就像awk
东西在我的其他答案。
只是为了让别人看到ImageMagick的连接成分分析的输出在第一阶段,它看起来像这样:
Objects (id: bounding-box centroid area mean-color):
0: 1020x563+0+0 507.6,281.2 567516 gray(253)
495: 53x36+377+259 405.3,273.3 1040 gray(0)
391: 101x35+658+181 699.9,195.6 984 gray(0)
515: 13x77+976+281 982.5,321.4 863 gray(0)
581: 35x37+624+376 641.9,397.1 740 gray(0)
439: 33x45+340+223 352.0,249.2 643 gray(1)
558: 47x32+705+320 727.2,334.8 641 gray(1)
353: 25x30+822+143 834.3,156.1 422 gray(0)
350: 27x31+898+138 911.4,152.7 402 gray(0)
343: 29x18+930+125 944.6,132.2 283 gray(0)
392: 45x12+759+186 783.0,193.0 276 gray(0)
663: 24x15+357+485 367.3,493.4 192 gray(0)
531: 98x58+169+297 209.4,336.2 152 gray(0)
377: 20x9+753+167 762.6,170.6 106 gray(0)
到最终convert
命令的参数如下所示:
convert http://i.stack.imgur.com/qqein.png -fill none -strokewidth 2 -stroke red \
-draw 'rectangle 377,259 430,295' \
-draw 'rectangle 658,181 759,216' \
-draw 'rectangle 976,281 989,358' \
-draw 'rectangle 624,376 659,413' \
-draw 'rectangle 340,223 373,268' \
-draw 'rectangle 705,320 752,352' \
-draw 'rectangle 822,143 847,173' \
-draw 'rectangle 898,138 925,169' \
-draw 'rectangle 930,125 959,143' \
-draw 'rectangle 759,186 804,198' \
-draw 'rectangle 357,485 381,500' \
-draw 'rectangle 169,297 267,355' \
-draw 'rectangle 753,167 773,176' out.png
** + 1 ** - 好的! (你是否也可以提出这个问题本身 - 它不应该得到downvote [没有*我的* upvote补偿]? - 当你在这个问题上,你可以阅读[这个问题](http:///stackoverflow.com/q/23495372/359307)并投票重新打开,如果你同意我的意见 - 谢谢。) –
完美的答案。正是我们需要的! – user3408380
在Python中这也是可能的,这对我们来说会更容易!谢谢:) – user3408380