2012-11-05 50 views
8

我有一个接口使用pimpl成语,但接口需要是可重入的。然而,调用线程不需要知道锁定。这是四个部分的问题,一部分是免费的C++ 11例子(这个例子包含了几个类似FAQ的问题,我已经运行过这个问题:lockingpimplrvalue和C++ 11,其中答案在某种程度上可疑他们的质量)。C++ 11可重入类锁定策略

在标题中,example.hpp:

#ifndef EXAMPLE_HPP 
#define EXAMPLE_HPP 

#include <memory> 
#include <string> 

#ifndef BOOST_THREAD_SHARED_MUTEX_HPP 
# include <boost/thread/shared_mutex.hpp> 
#endif 

namespace stackoverflow { 

class Example final { 
public: 
    typedef ::boost::shared_mutex shared_mtx_t; 
    typedef ::boost::shared_lock<shared_mtx_t> shared_lock_t; 
    typedef ::boost::unique_lock<shared_mtx_t> unique_lock_t; 

    Example(); 
    Example(const std::string& initial_foo); 

    ~Example(); 
    Example(const Example&) = delete;    // Prevent copying 
    Example& operator=(const Example&) = delete; // Prevent assignment 

    // Example getter method that supports rvalues 
    std::string foo() const; 

    // Example setter method using perfect forwarding & move semantics. Anything 
    // that's std::string-like will work as a parameter. 
    template<typename T> 
    bool foo_set(T&& new_val); 

    // Begin foo_set() variants required to deal with C types (e.g. char[], 
    // char*). The rest of the foo_set() methods here are *NOT* required under 
    // normal circumstances. 

    // Setup a specialization for const char[] that simply forwards along a 
    // std::string. This is preferred over having to explicitly instantiate a 
    // bunch of const char[N] templates or possibly std::decay a char[] to a 
    // char* (i.e. using a std::string as a container is a Good Thing(tm)). 
    // 
    // Also, without this, it is required to explicitly instantiate the required 
    // variants of const char[N] someplace. For example, in example.cpp: 
    // 
    // template bool Example::foo_set<const char(&)[6]>(char const (&)[6]); 
    // template bool Example::foo_set<const char(&)[7]>(char const (&)[7]); 
    // template bool Example::foo_set<const char(&)[8]>(char const (&)[8]); 
    // ... 
    // 
    // Eww. Best to just forward to wrap new_val in a std::string and proxy 
    // along the call to foo_set<std::string>(). 
    template<std::size_t N> 
    bool foo_set(const char (&new_val)[N]) { return foo_set(std::string(new_val, N)); } 

    // Inline function overloads to support null terminated char* && const 
    // char* arguments. If there's a way to reduce this duplication with 
    // templates, I'm all ears because I wasn't able to generate a templated 
    // versions that didn't conflict with foo_set<T&&>(). 
    bool foo_set(char* new_val)  { return foo_set(std::string(new_val)); } 
    bool foo_set(const char* new_val) { return foo_set(std::string(new_val)); } 

    // End of the foo_set() overloads. 

    // Example getter method for a POD data type 
    bool bar(const std::size_t len, char* dst) const; 
    std::size_t bar_capacity() const; 

    // Example setter that uses a unique lock to access foo() 
    bool bar_set(const std::size_t len, const char* src); 

    // Question #1: I can't find any harm in making Impl public because the 
    // definition is opaque. Making Impl public, however, greatly helps with 
    // implementing Example, which does have access to Example::Impl's 
    // interface. This is also preferre, IMO, over using friend. 
    class Impl; 

private: 
    mutable shared_mtx_t rw_mtx_; 
    std::unique_ptr<Impl> impl_; 
}; 

} // namespace stackoverflow 

#endif // EXAMPLE_HPP 

然后在执行:

#include "example.hpp" 

#include <algorithm> 
#include <cstring> 
#include <utility> 

namespace stackoverflow { 

class Example; 
class Example::Impl; 


#if !defined(_MSC_VER) || _MSC_VER > 1600 
// Congratulations!, you're using a compiler that isn't broken 

// Explicitly instantiate std::string variants 
template bool Example::foo_set<std::string>(std::string&& src); 
template bool Example::foo_set<std::string&>(std::string& src); 
template bool Example::foo_set<const std::string&>(const std::string& src); 

// The following isn't required because of the array Example::foo_set() 
// specialization, but I'm leaving it here for reference. 
// 
// template bool Example::foo_set<const char(&)[7]>(char const (&)[7]); 
#else 
// MSVC workaround: msvc_rage_hate() isn't ever called, but use it to 
// instantiate all of the required templates. 
namespace { 
    void msvc_rage_hate() { 
    Example e; 
    const std::string a_const_str("a"); 
    std::string a_str("b"); 
    e.foo_set(a_const_str); 
    e.foo_set(a_str); 
    e.foo_set("c"); 
    e.foo_set(std::string("d")); 
    } 
} // anon namespace 
#endif // _MSC_VER 



// Example Private Implementation 

class Example::Impl final { 
public: 
    // ctors && obj boilerplate 
    Impl(); 
    Impl(const std::string& init_foo); 
    ~Impl() = default; 
    Impl(const Impl&) = delete; 
    Impl& operator=(const Impl&) = delete; 

    // Use a template because we don't care which Lockable concept or LockType 
    // is being used, just so long as a lock is held. 
    template <typename LockType> 
    bool bar(LockType& lk, std::size_t len, char* dst) const; 

    template <typename LockType> 
    std::size_t bar_capacity(LockType& lk) const; 

    // bar_set() requires a unique lock 
    bool bar_set(unique_lock_t& lk, const std::size_t len, const char* src); 

    template <typename LockType> 
    std::string foo(LockType& lk) const; 

    template <typename T> 
    bool foo_set(unique_lock_t& lk, T&& src); 

private: 
    // Example datatype that supports rvalue references 
    std::string foo_; 

    // Example POD datatype that doesn't support rvalue 
    static const std::size_t bar_capacity_ = 16; 
    char bar_[bar_capacity_ + 1]; 
}; 

// Example delegating ctor 
Example::Impl::Impl() : Impl("default foo value") {} 

Example::Impl::Impl(const std::string& init_foo) : foo_{init_foo} { 
    std::memset(bar_, 99 /* ASCII 'c' */, bar_capacity_); 
    bar_[bar_capacity_] = '\0'; // null padding 
} 


template <typename LockType> 
bool 
Example::Impl::bar(LockType& lk, const std::size_t len, char* dst) const { 
    BOOST_ASSERT(lk.owns_lock()); 
    if (len != bar_capacity(lk)) 
    return false; 
    std::memcpy(dst, bar_, len); 

    return true; 
} 


template <typename LockType> 
std::size_t 
Example::Impl::bar_capacity(LockType& lk) const { 
    BOOST_ASSERT(lk.owns_lock()); 
    return Impl::bar_capacity_; 
} 


bool 
Example::Impl::bar_set(unique_lock_t &lk, const std::size_t len, const char* src) { 
    BOOST_ASSERT(lk.owns_lock()); 

    // Return false if len is bigger than bar_capacity or the values are 
    // identical 
    if (len > bar_capacity(lk) || foo(lk) == src) 
    return false; 

    // Copy src to bar_, a side effect of updating foo_ if they're different 
    std::memcpy(bar_, src, std::min(len, bar_capacity(lk))); 
    foo_set(lk, std::string(src, len)); 
    return true; 
} 


template <typename LockType> 
std::string 
Example::Impl::foo(LockType& lk) const { 
    BOOST_ASSERT(lk.owns_lock()); 
    return foo_; 
} 


template <typename T> 
bool 
Example::Impl::foo_set(unique_lock_t &lk, T&& src) { 
    BOOST_ASSERT(lk.owns_lock()); 
    if (foo_ == src) return false; 
    foo_ = std::move(src); 
    return true; 
} 


// Example Public Interface 

Example::Example() : impl_(new Impl{}) {} 
Example::Example(const std::string& init_foo) : impl_(new Impl{init_foo}) {} 
Example::~Example() = default; 

bool 
Example::bar(const std::size_t len, char* dst) const { 
    shared_lock_t lk(rw_mtx_); 
    return impl_->bar(lk, len , dst); 
} 

std::size_t 
Example::bar_capacity() const { 
    shared_lock_t lk(rw_mtx_); 
    return impl_->bar_capacity(lk); 
} 

bool 
Example::bar_set(const std::size_t len, const char* src) { 
    unique_lock_t lk(rw_mtx_); 
    return impl_->bar_set(lk, len, src); 
} 

std::string 
Example::foo() const { 
    shared_lock_t lk(rw_mtx_); 
    return impl_->foo(lk); 
} 

template<typename T> 
bool 
Example::foo_set(T&& src) { 
    unique_lock_t lk(rw_mtx_); 
    return impl_->foo_set(lk, std::forward<T>(src)); 
} 

} // namespace stackoverflow 

而且我的问题是:

  1. 有没有更好的方式来处理锁定在私人执行?
  2. 由于定义是不透明的,是否会让Impl公开?
  3. 当使用clang的-O4启用Link-Time Optimization时,链接器应该有可能绕过std::unique_ptr的解除引用开销。有没有人验证过?
  4. 有没有办法拨打foo_set("asdf")并正确连接示例链接?我们在计算出const char[6]的正确显式模板实例时遇到问题。现在我已经设置了一个模板专门化,创建一个std::string对象并代理对foo_set()的调用。所有事情都考虑到了,这似乎是最好的前进方向,但我想知道如何通过“asdf”和结果。

关于锁定策略,我已经开发了对这个明显的偏见有以下几个原因:

  • 我可以改变了互斥体是一个独特的互斥酌情
  • 通过设计默认地将Impl API来包含所需的锁定,锁定语义的编译时间保证非常强大
  • 很难忘记锁定某些东西(并且在发生这种情况时出现“简单的API”错误,编译器会再次捕获一旦API已被修复)
  • 这是很难留下点什么锁定或创建一个死锁由于RAII和具有默认地将Impl没有参考互斥
  • 的模板使用不再需要从一个独特的锁定降级到共享锁
  • 因为这种锁定策略涵盖的代码比实际需要的要多,所以它需要明确地努力将锁从独特的降级到共享,这处理了常见的情况,其中共享锁的假设在进入独特时需要重新测试锁定区域
  • 错误修正或Impl API更改不需要重新编译整个应用程序,因为example.hpp的API是外部修复的。

我读过ACE使用这种类型的锁定策略为好,但我欢迎ACE用户或其他一些真实世界的批评重新:围绕穿过锁定为接口的必要组成部分。

为了完整起见,这里有一个example_main.cpp供人们咀嚼。

#include <sysexits.h> 

#include <cassert> 
#include <iostream> 
#include <memory> 
#include <stdexcept> 

#include "example.hpp" 

int 
main(const int /*argc*/, const char** /*argv*/) { 
    using std::cout; 
    using std::endl; 
    using stackoverflow::Example; 

    { 
    Example e; 
    cout << "Example's foo w/ empty ctor arg: " << e.foo() << endl; 
    } 

    { 
    Example e("foo"); 
    cout << "Example's foo w/ ctor arg: " << e.foo() << endl; 
    } 

    try { 
    Example e; 
    { // Test assignment from std::string 
     std::string str("cccccccc"); 
     e.foo_set(str); 
     assert(e.foo() == "cccccccc"); // Value is the same 
     assert(str.empty());   // Stole the contents of a_str 
    } 
    { // Test assignment from a const std::string 
     const std::string const_str("bbbbbbb"); 
     e.foo_set(const_str); 
     assert(const_str == "bbbbbbb");    // Value is the same 
     assert(const_str.c_str() != e.foo().c_str()); // Made a copy 
    } 
    { 
     // Test a const char[7] and a temporary std::string 
     e.foo_set("foobar"); 
     e.foo_set(std::string("ddddd")); 
    } 
    { // Test char[7] 
     char buf[7] = {"foobar"}; 
     e.foo_set(buf); 
     assert(e.foo() == "foobar"); 
    } 
    { //// And a *char[] & const *char[] 
     // Use unique_ptr to automatically free buf 
     std::unique_ptr<char[]> buf(new char[7]); 
     std::memcpy(buf.get(), "foobar", 6); 
     buf[6] = '\0'; 
     e.foo_set(buf.get()); 
     const char* const_ptr = buf.get(); 
     e.foo_set(const_ptr); 
     assert(e.foo() == "foobar"); 
    } 

    cout << "Example's bar capacity: " << e.bar_capacity() << endl; 
    const std::size_t len = e.bar_capacity(); 

    std::unique_ptr<char[]> buf(new char[len +1]); 

    // Copy bar in to buf 
    if (!e.bar(len, buf.get())) 
     throw std::runtime_error("Unable to get bar"); 
    buf[len] = '\0'; // Null terminate the C string 
    cout << endl << "foo and bar (a.k.a.) have different values:" << endl; 
    cout << "Example's foo value: " << e.foo() << endl; 
    cout << "Example's bar value: " << buf.get() << endl; 

    // Set bar, which has a side effect of calling foo_set() 
    buf[0] = 'c'; buf[1] = buf[2] = '+'; buf[3] = '\0'; 
    if (!e.bar_set(sizeof("c++") - 1, buf.get())) 
     throw std::runtime_error("Unable to set bar"); 

    cout << endl << "foo and bar now have identical values but only one lock was acquired when setting:" << endl; 
    cout << "Example's foo value: " << e.foo() << endl; 
    cout << "Example's bar value: " << buf.get() << endl; 
    } catch (...) { 
    return EX_SOFTWARE; 
    } 

    return EX_OK; 
} 

,并建立说明使用C++11libc++

clang++ -O4 -std=c++11 -stdlib=libc++ -I/path/to/boost/include -o example.cpp.o -c example.cpp 
clang++ -O4 -std=c++11 -stdlib=libc++ -I/path/to/boost/include -o example_main.cpp.o -c example_main.cpp 
clang++ -O4 -stdlib=libc++ -o example example.cpp.o example_main.cpp.o /path/to/boost/lib/libboost_exception-mt.dylib /path/to/boost/lib/libboost_system-mt.dylib /path/to/boost/lib/libboost_thread-mt.dylib 

作为一个小的奖金,我更新了这个例子,包括在foo_set()方法,使用右值引用完美转发。虽然不够完美,但花费的时间比我预期的要长,这正是链接时遇到的问题。这还包括C基本类型的适当超载,包括:char*,const char*,char[N]const char[N]

+6

如果您使互斥锁变为可变,则可以使您的方法为常量。 – inf

+3

ACE是丑陋的恕我直言 - 我不会把它作为参考 - 虽然这是一个膝盖猛拉的反应... – Caribou

+0

额外的包括警卫BOOST_THREAD_SHARED_MUTEX_HPP不是必需的,可能不会给你任何东西。为什么'最后'?它防止了一些在测试过程中可能有用的技巧。 –

回答

1

对于问题1,我试图做的一件事就是使用SFINAE来限制允许输入的锁类型为LockTypeshared_lock_tunique_lock_t

即:

template <typename LockType> 
typename std::enable_if< 
    std::is_same< LockType, shared_lock_t > || std::is_same< LockType, unique_lock_t >, 
    size_t 
>::type 
bar_capacity(LockType& lk) const; 

...但是,确实会有点冗长。

这意味着传入错误类型的锁会给你一个“没有匹配”的错误。另一种方法是将两个不同的bar_capacity公开,其中shared_lock_tunique_lock_t公开,并且私有的bar_capacity公开他们采用模板LockType

书面,任何类型的一个.owns_lock()方法返回一个类型转换为bool是一个有效的参数有...

1

使用PIMPL方法,互斥体应该实施的一部分。当锁开始时,这会让你掌握。

顺便说一句,为什么使用unique_lock时lock_guard将足够?

我没有看到任何使impl公开的优点。

std :: unique_ptr应该与大多数现代编译器的指针一样高效。不过没有验证。

我会转发为const char [N] foo_set不是

template<std::size_t N> 
    bool foo_set(const char (&new_val)[N]) { return foo_set(std::string(new_val, N)); } 

但像

template<std::size_t N> 
    bool foo_set(const char (&new_val)[N]) { return foo_set(N, new_val); } 

这避免了在头文件中的字符串创建,并让实现做相应处理即可。

+0

re:Impl公开。我**是这样做的,因为我在.cpp中使用了帮助函数,正在交给'Impl的'const'引用,作为使用编译器强制执行无异常代码的一种方式。然而,这不再是必要的!如果你阅读了这篇博文中的例子https://codeblurbs.wordpress.com/2012/12/06/lust/(我需要证明/编辑),使用Lambdas减轻了对公共Impl的需求,而我非常兴奋使用lambdas来强化编译器保证。 – Sean

+0

re:foo_set()中的转发,请尝试在示例中编译它。我向Scott Meyers反馈了一个音符:正确地说这是一个完美的向char *',const char *','char []'和const char []转发,并且解决方案是一个丑陋的洞如果你找出了一些东西(或者我错过了某些明显的东西),我就会全神贯注。 – Sean

+0

正如你所看到的,我的建议并不是完美的转发,而是转向一个可以管理特定情况的案例。 –