1
我已经简单的模型是这样的:如何计算张量流量损失?
n_input = 14
n_out = 1
weights = {
'out': tf.Variable(tf.random_normal([n_input, n_out]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_out]))
}
def perceptron(input_tensor, weights, biases):
out_layer_multiplication = tf.matmul(input_tensor, weights['out'])
out_layer_addition = out_layer_multiplication + biases['out']
return out_layer_addition
input_tensor = rows
model = perceptron
“行” 尺寸为(N,14)和 “out” 尺寸为(N),其中, “出” 与 “行” 运行模型的结果作为“input_tensor”。
我想计算张量流量损失。计算的假设是:
ls = 0
for i in range(len(out)-1):
if out[i] < out[i+1]:
ls += 1
其中“ls”是模型损失。我怎样才能以tensorflow表示法来计算它?