我试图使用Scikit-learn的分层随机拆分拆分示例数据集。我也跟着上所示的例子Scikit学习文档heresklearn.cross_validation.StratifiedShuffleSplit - 错误:“索引超出范围”
import pandas as pd
import numpy as np
# UCI's wine dataset
wine = pd.read_csv("https://s3.amazonaws.com/demo-datasets/wine.csv")
# separate target variable from dataset
target = wine['quality']
data = wine.drop('quality',axis = 1)
# Stratified Split of train and test data
from sklearn.cross_validation import StratifiedShuffleSplit
sss = StratifiedShuffleSplit(target, n_iter=3, test_size=0.2)
for train_index, test_index in sss:
xtrain, xtest = data[train_index], data[test_index]
ytrain, ytest = target[train_index], target[test_index]
# Check target series for distribution of classes
ytrain.value_counts()
ytest.value_counts()
然而,一旦运行该脚本,我得到以下错误:
IndexError: indices are out-of-bounds
可能有人请指出我在做什么错在这里?谢谢!
看起来你的索引错误应该发生在这里:'xtrain,xtest = data [train_index],data [test_index]'。如果是这样,你可以编辑你的问题,以帮助其他人找到问题。 – Scott