2015-09-03 167 views
0

想知道是否有更有效的方法将文件内容加载到稀疏矩阵中。 下面的代码从一个大文件(8GB)中读取,该文件大多为零值(非常稀疏),然后在读取的每一行上执行一些处理。 我想对其进行有效的算术运算,所以我尝试将行存储为稀疏矩阵。 由于文件中的行数并未预先知道,而且数组/矩阵不是动态的,我必须先将它存储在一个列表中,然后转换为一个csr_matrix。 这个阶段(“X = csr_matrix(X)”)需要很多的时间和记忆。
有什么建议吗?Python - 将稀疏文件读入稀疏矩阵的最佳方法

import numpy as np 
from scipy.sparse import csr_matrix 
from datetime import datetime as time 

global header_names; header_names = [] 

def readOppFromFile(filepath): 

    print "Read Opportunities From File..." + str(time.now()) 

    # read file header - feature names separated with commas 
    global header_names 

    with open(filepath, "r") as f: 

     i=0 

     header_names = f.readline().rstrip().split(',') 

     for line in f: 


      # replace empty string with 0 in comma-separated string. In addition, clean null values (replace with 0) 
      yield [(x.replace('null', '0') if x else 0) for x in line.rstrip().split(',')] 
      i += 1 

     print "Number of opportunities read from file: %s" % str(i) 

def processOpportunities(opp_data): 

    print "Process Opportunities ..." + str(time.now()) 

    # Initialization 
    X = [] 
    targets_array = [] 

    global header_names 

    for opportunity in opp_data: 

     # Extract for each opportunity it's target variable, save it in a special array and then remove it 
     target = opportunity[-1] # Only last column 
     targets_array.append(target) 
     del opportunity[-1] # Remove last column 

     X.append(opportunity)  

    print " Starting to transform to a sparse matrix" + str(time.now()) 
    X = csr_matrix(X) 
    print "Finished transform to a sparse matrix " + str(time.now()) 

    # The target variable of each impression 
    targets_array = np.array(targets_array, dtype=int) 
    print "targets_array" + str(time.now())   

    return X, targets_array 

def main(): 


    print "STRAT -----> " + str(time.now()) 
    running_time = time.now() 

    opps_data = readOppFromFile(inputfilename) 

    features, target = processOpportunities(opps_data) 

if __name__ == '__main__': 

    """ ################### GLOBAL VARIABLES ############################ """  
    inputfilename = 'C:/somefolder/trainingset.working.csv' 

    """ ################### START PROGRAM ############################ """  
    main() 

更新: 矩阵的尺寸不是恒定的,它们依赖于输入文件,并在该程序的每次运行可以改变。 有关我的输入的一小部分,请参阅here

+1

什么决定了稀疏矩阵的界限?只是文件中的行数?你还可以分享一个链接到你的巨型文件的一个非常小的版本,以便任何人都可以复制和测试? – KobeJohn

+0

此尺寸由输入文件设置,但可能会在每次运行中更改。在这里查看我的输入文件的示例版本:https://github.com/nancyya/Public/blob/master/sample.traininset.working1000records.csv – Serendipity

+0

谢谢。我会看看我能否解决问题。我一直想在numpy中尝试一些稀疏矩阵。但是,您可以检查数据文件是否适用于上述代码?我得到了'ValueError:int()的无效文字,其基数为10:'da7f5cb5-2189-40cc-8a42-9fdedc29f925'' – KobeJohn

回答

2

您可以直接构建一个稀疏矩阵,如果你跟踪非零的手动:

X_data = [] 
X_row, X_col = [], [] 
targets_array = [] 

for row_idx, opportunity in enumerate(opp_data): 
    targets_array.append(int(opportunity[-1])) 
    row = np.array(map(int, opportunity[:-1])) 
    col_inds, = np.nonzero(row) 
    X_col.extend(col_inds) 
    X_row.extend([row_idx]*len(col_inds)) 
    X_data.extend(row[col_inds]) 

print " Starting to transform to a sparse matrix" + str(time.now()) 
X = coo_matrix((X_data, (X_row, X_col)), dtype=int) 
print "Finished transform to a sparse matrix " + str(time.now()) 

这种构造在COO格式矩阵,这是很容易转换成你喜欢的任何格式:

X = X.tocsr()