-2
我从互联网上得到的这段代码。我适用于我的数据和工作。所以我试图展示这种方法的可视化,但我无法找到k-medoids的相关可视化代码。Python K-medoids可视化
from nltk.metrics import distance as distance
import Pycluster as PC
words = ['apple', 'Doppler', 'applaud', 'append', 'barker',
'baker', 'bismark', 'park', 'stake', 'steak', 'teak', 'sleek']
dist = [distance.edit_distance(words[i], words[j])
for i in range(1, len(words))
for j in range(0, i)]
clusterid, error, nfound = PC.kmedoids(dist, nclusters=3)
cluster = dict()
uniqid=list(set(clusterid))
new_ids = [ uniqid.index(val) for val in clusterid]
for word, label in zip(words, clusterid):
cluster.setdefault(label, []).append(word)
for label, grp in cluster.items():
print(grp)
有没有办法让它工作?像levenshtein距离? – user2717427
这对于可视化有什么帮助? Levenshtein是编辑距离系列的一部分。 –