3
我在SURF上做了一个项目,到目前为止我已经成功实现了SURF特性,并且我也正确地完成了特性评估。但我不知道如何做DESCRIPTOR评估......我使用的是C++/opencv svn。SURF的描述符评估opencv
Here你可以找到来自OpenCV的SVN示例代码(这说明如何使用评价者,但在我的代码我不能用它......
我的代码:
#include "cv.h" // include standard OpenCV headers, same as before
#include "highgui.h"
#include "ml.h"
#include <stdio.h>
#include <iostream>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <vector>
//#include "precomp.hpp"
using namespace cv; // all the new API is put into "cv" namespace. Export its content
using namespace std;
using std::cout;
using std::cerr;
using std::endl;
using std::vector;
// enable/disable use of mixed API in the code below.
#define DEMO_MIXED_API_USE 1
void warpPerspectiveRand(const Mat& src, Mat& dst, Mat& H, RNG& rng)
{
H.create(3, 3, CV_32FC1);
H.at<float>(0,0) = rng.uniform(0.8f, 1.2f);
H.at<float>(0,1) = rng.uniform(-0.1f, 0.1f);
H.at<float>(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols;
H.at<float>(1,0) = rng.uniform(-0.1f, 0.1f);
H.at<float>(1,1) = rng.uniform(0.8f, 1.2f);
H.at<float>(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows;
H.at<float>(2,0) = rng.uniform(-1e-4f, 1e-4f);
H.at<float>(2,1) = rng.uniform(-1e-4f, 1e-4f);
H.at<float>(2,2) = rng.uniform(0.8f, 1.2f);
warpPerspective(src, dst, H, src.size());
}
double match(const vector<KeyPoint>& /*kpts_train*/, const vector<KeyPoint>& /*kpts_query*/, DescriptorMatcher& matcher,
const Mat& train, const Mat& query, vector<DMatch>& matches)
{
double t = (double)getTickCount();
matcher.match(query, train, matches); //Using features2d
return ((double)getTickCount() - t)/getTickFrequency();
}
void simpleMatching(Ptr<DescriptorMatcher>& descriptorMatcher,
const Mat& descriptors1, const Mat& descriptors2,
vector<DMatch>& matches12);
int main(int argc, char** argv)
{
string im1_name, im2_name;
im1_name = "lena.jpg";
im2_name = "lena.jpg";
Mat img1 = imread(im1_name, 1);
Mat img2 = imread(im2_name, 1);
RNG rng = theRNG();
Mat H12;
warpPerspectiveRand(img1, img2, H12, rng);
SurfFeatureDetector detector(2000);
vector<KeyPoint> keypoints1, keypoints2;
detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2);
float repeatability;
int correspCount;
evaluateFeatureDetector(img1, img2, H12, &keypoints1, &keypoints2, repeatability, correspCount);
cout << "repeatability = " << repeatability << endl;
cout << "correspCount = " << correspCount << endl;
// computing descriptors
SurfDescriptorExtractor extractor;
Mat descriptors1, descriptors2;
extractor.compute(img1, keypoints1, descriptors1);
extractor.compute(img2, keypoints2, descriptors2);
return 0;
}
所以我问题是:如何评价描述符SURF(如何做),我在很多方面尝试,但我不能这样做..
谢谢你这么多
我想这些功能,并成功地与我的工作,我关心的是这样的:当我实现功能PTR GDM =新VectorDescriptorMatcher(提取器,匹配器);它不是除了提取器和匹配器,我需要这两个参数来实现下一个函数,它是valuateGenericDescriptorMatcher(img1,img2,H12,keypoints1,keypoints2,0,0,curve,gdm);所以你有什么想法我在这里做错了 –
Mario
没有。我建议你关闭这个问题,并用一个简单的例子来问一个新问题。 – Unapiedra