0
首次进口大熊猫创造完美的正态分布系列:大熊猫如何计算sem()?
import pandas as pd
lst = [[5 for x in range(5)], [4 for x in range(4)], [3 for x in range(3)],
[2 for x in range(2)], [1 for x in range(1)], [2 for x in range(2)],
[3 for x in range(3)], [4 for x in range(4)], [5 for x in range(5)]]
lst = [item for sublists in lst for item in sublists]
series = pd.Series(lst)
让我们来看看,这种分布是正常的:
print(round(sum(series - series.mean())/series.count(), 1) == 0)
# if distribution is normal we'll see True
现在,让我们打印SEM()的宇宙:
print(series.sem(ddof=0))
# 0.21619987017
现在供样品:
print(series.sem()) # ddof=1
# 0.220026713637
但我不明白大熊猫如何计算平均值的标准误差,如果它与宇宙一起工作。是否使用
se_x = sd_x/sqrt(len(x))
或创建样品?如果它创建样本,我可以设置多少个以及如何设置它们?
熊猫如何计算样本的sem如果计数< 30?