1
我拟合模型的函数auto.arima()
,那我就按功能Arima()
与同型号的再次配合,但我得到不同的结果。为什么auto.arima()和Arima()不同?
通过auto.arima()
:
> a<-c(90,88,96,110,105,128,119,117,155,135,138,127,156,168,145,160,180,175,189,166,184)
> chuoi<-ts(a,frequency=1,start=c(1990))
> auto.arima(chuoi)
Series: chuoi
ARIMA(2,1,0) with drift
Coefficients:
ar1 ar2 drift
-0.7075 -0.4648 4.7897
s.e. 0.1930 0.1972 1.3689
sigma^2 estimated as 163.1: log likelihood=-79.7
AIC=167.39 AICc=170.06 BIC=171.38
通过Arima()
与同型号,使用的所有方法 “CSS-ML”, “ML” 和 “CSS”:
> fit210<-Arima(chuoi,c(2,1,0),method="ML")
> fit210
Series: chuoi
ARIMA(2,1,0)
Coefficients:
ar1 ar2
-0.4670 -0.1928
s.e. 0.2162 0.2201
sigma^2 estimated as 244.2: log likelihood=-83.48
AIC=172.96 AICc=174.46 BIC=175.95
> fit210<-Arima(chuoi,c(2,1,0),method="CSS")
> fit210
Series: chuoi
ARIMA(2,1,0)
Coefficients:
ar1 ar2
-0.4876 -0.2111
s.e. 0.2196 0.2304
sigma^2 estimated as 268.3: part log likelihood=-84.3
> fit210<-Arima(chuoi,c(2,1,0),method="CSS-ML")
> fit210
Series: chuoi
ARIMA(2,1,0)
Coefficients:
ar1 ar2
-0.4671 -0.1928
s.e. 0.2162 0.2201
sigma^2 estimated as 244.2: log likelihood=-83.48
AIC=172.96 AICc=174.46 BIC=175.95
很显然,我有不同的系数AR (1),ar(2)。那么,函数auto.arima()
如何计算系数ar(1),ar(2)?
非常感谢@rbm。我试过并得到了真实的结果。我需要阅读更多关于Arima()的信息。 –
@Duong Dinh Tu如果你对答案感到满意,你应该考虑[接受它](http://meta.stackexchange.com/questions/5234/how-does-accepting-an-answer-work) – lanenok