2017-08-31 70 views
1

我曾尝试在Tensorflow中实施丢包。Tensorflow Dropout实施,测试准确性=训练准确性和低,为什么?

我的确知道,在训练和测试过程中,应该将dropout声明为占位符,keep_prob参数应该是不同的。然而,仍然几乎打破了我的大脑试图找到为什么退出的准确性是如此之低。当keep_drop = 1时,列车精度为99%,测试精度为85%,keep_drop = 0.5,列车和测试精度均为16%任何想法在哪里查看,任何人?谢谢!

def forward_propagation(X, parameters, keep_prob): 
""" 
Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX 

Arguments: 
X -- input dataset placeholder, of shape (input size, number of examples) 
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3" 
       the shapes are given in initialize_parameters 

Returns: 
Z3 -- the output of the last LINEAR unit 
""" 
# Retrieve the parameters from the dictionary "parameters" 
W1 = parameters['W1'] 
b1 = parameters['b1'] 
W2 = parameters['W2'] 
b2 = parameters['b2'] 
W3 = parameters['W3'] 
b3 = parameters['b3'] 


Z1 = tf.add(tf.matmul(W1,X),b1)      # Z1 = np.dot(W1, X) + b1 
A1 = tf.nn.relu(Z1)         # A1 = relu(Z1) 
A1 = tf.nn.dropout(A1,keep_prob)     # apply dropout 
Z2 = tf.add(tf.matmul(W2,A1),b2)     # Z2 = np.dot(W2, a1) + b2 
A2 = tf.nn.relu(Z2)         # A2 = relu(Z2) 
A2 = tf.nn.dropout(A2,keep_prob)     # apply dropout 
Z3 = tf.add(tf.matmul(W3,A2),b3)     # Z3 = np.dot(W3,A2) + b3 


return Z3 



def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001, lambd = 0.03, train_keep_prob = 0.5, 
     num_epochs = 800, minibatch_size = 32, print_cost = True): 
""" 
Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX. 

Arguments: 
X_train -- training set, of shape (input size = 12288, number of training examples = 1080) 
Y_train -- test set, of shape (output size = 6, number of training examples = 1080) 
X_test -- training set, of shape (input size = 12288, number of training examples = 120) 
Y_test -- test set, of shape (output size = 6, number of test examples = 120) 
learning_rate -- learning rate of the optimization 
lambd -- L2 regularization hyperparameter 
train_keep_prob -- probability of keeping a neuron in hidden layer for dropout implementation 
num_epochs -- number of epochs of the optimization loop 
minibatch_size -- size of a minibatch 
print_cost -- True to print the cost every 100 epochs 

Returns: 
parameters -- parameters learnt by the model. They can then be used to predict. 
""" 

ops.reset_default_graph()       # to be able to rerun the model without overwriting tf variables 
tf.set_random_seed(1)        # to keep consistent results 
seed = 3           # to keep consistent results 
(n_x, m) = X_train.shape       # (n_x: input size, m : number of examples in the train set) 
n_y = Y_train.shape[0]       # n_y : output size 
costs = []          # To keep track of the cost 


# Create Placeholders of shape (n_x, n_y) 
X, Y = create_placeholders(n_x, n_y) 
keep_prob = tf.placeholder(tf.float32) 

# Initialize parameters 
parameters = initialize_parameters() 

# Forward propagation: Build the forward propagation in the tensorflow graph 
Z3 = forward_propagation(X, parameters, keep_prob) 

# Cost function: Add cost function to tensorflow graph 
cost = compute_cost(Z3, Y, parameters, lambd) 

# Backpropagation. 
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) 

# Initialize all the variables 
init = tf.global_variables_initializer() 

# Start the session to compute the tensorflow graph 
with tf.Session() as sess: 

    # Run the initialization 
    sess.run(init) 

    # Do the training loop 
    for epoch in range(num_epochs): 

     epoch_cost = 0.      # Defines a cost related to an epoch 
     num_minibatches = int(m/minibatch_size) # number of minibatches of size minibatch_size in the train set 
     seed = seed + 1 
     minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) 

     for minibatch in minibatches: 

      # Select a minibatch 
      (minibatch_X, minibatch_Y) = minibatch 

      # IMPORTANT: The line that runs the graph on a minibatch. 
      # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y). 
      _ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y, keep_prob: train_keep_prob}) 

      epoch_cost += minibatch_cost/num_minibatches 

     # Print the cost every epoch 
     if print_cost == True and epoch % 100 == 0: 
      print ("Cost after epoch %i: %f" % (epoch, epoch_cost)) 
     if print_cost == True and epoch % 5 == 0: 
      costs.append(epoch_cost) 

    # plot the cost 
    plt.plot(np.squeeze(costs)) 
    plt.ylabel('cost') 
    plt.xlabel('iterations (per tens)') 
    plt.title("Learning rate =" + str(learning_rate)) 
    plt.show() 

    # lets save the parameters in a variable 
    parameters = sess.run(parameters) 
    print ("Parameters have been trained!") 

    # Calculate the correct predictions 
    correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y)) 

    # Calculate accuracy on the test set 
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 

    print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train, keep_prob: 1.0})) 
    print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test, keep_prob: 1.0})) 

    return parameters 
+0

您通常会期望较低的列车精度以及较差的测试精度和较高的测试精度。在这种情况下,您需要更高的keep_prob(> 0.5)或增加图层的大小。你应该阅读什么是辍学/正规化。 – gidim

+0

我认为我需要澄清的是,没有丢失列车的准确性99%的测试准确性85%,同时退出训练和测试的准确性是相同的16%,这是太可疑了。 – Andrey

回答

0

算法是正确的。这只是keep_prob = 0.5太低了。

设法在测试用下列超参数设定87%的准确度: learning_rate = 0.00002,lambd = 0.03,train_keep_prob = 0.90,num_epochs = 1500,minibatch_size = 32,

+0

我想你的网络很小?您没有在问题中包含参数。 – lejlot

0

在第一种情况的模型过度拟合了数据,因此列车和测试精度之间的差异很大。丢失是一种正则化技术,通过减少特定节点的影响来减少模型的方差,从而防止过度拟合。但保持keep_prob = 0.5(太低)会削弱模型,因此它对数据的要求不够严格,准确度低至16%。您应该逐渐减少keep_prob值,直到找到合适的值。

相关问题