我有一个熊猫数据帧:大熊猫过滤器日期时间:类型错误:无法比拟的偏移天真和偏移感知日期时间
name my_timestamp
------------------------------------------
0 a1 2016-07-28 09:27:07.536963-07:00
1 a2 2016-07-28 09:27:07.536963-07:00
2 a3 2016-08-15 13:05:54.924185-07:00
3 a4 2016-08-30 04:04:18.971667-07:00
4 a5 2016-03-22 14:36:22.999825-07:00
5 a6 2016-08-30 04:04:18.971667-07:00
我想在我的熊猫数据帧过滤掉一些行象下面这样:
import datetime
my_df[my_df.my_timestamp > datetime.datetime(2016, 7, 1)]
,但得到以下错误:
TypeErrorTraceback (most recent call last)
<ipython-input-21-35be746f191d> in <module>()
1 import datetime
----> 2 my_df[my_df.my_timestamp > datetime.datetime(2016, 7, 1)]
/usr/local/lib/python2.7/dist-packages/pandas/core/ops.pyc in wrapper(self, other, axis)
761 other = np.asarray(other)
762
--> 763 res = na_op(values, other)
764 if isscalar(res):
765 raise TypeError('Could not compare %s type with Series' %
/usr/local/lib/python2.7/dist-packages/pandas/core/ops.pyc in na_op(x, y)
681 result = lib.vec_compare(x, y, op)
682 else:
--> 683 result = lib.scalar_compare(x, y, op)
684 else:
685
pandas/lib.pyx in pandas.lib.scalar_compare (pandas/lib.c:14261)()
TypeError: can't compare offset-naive and offset-aware date times
这似乎是时区的问题。这里忽略时区的最好方法是什么?谢谢!
您可以为您的数据帧的样本? (以及它是如何构建的) –
my_df [my_df.my_timestamp> pd.to_datetime(“2016-07-01”)] – piRSquared
@ DennisGolomazov:添加了示例数据框。谢谢! – Edamame